3.5.16 \(\int \frac {A+B x}{x^3 (a+b x)^{3/2}} \, dx\)

Optimal. Leaf size=110 \[ -\frac {3 b (5 A b-4 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{4 a^{7/2}}+\frac {3 b (5 A b-4 a B)}{4 a^3 \sqrt {a+b x}}+\frac {5 A b-4 a B}{4 a^2 x \sqrt {a+b x}}-\frac {A}{2 a x^2 \sqrt {a+b x}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 112, normalized size of antiderivative = 1.02, number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {78, 51, 63, 208} \begin {gather*} \frac {3 \sqrt {a+b x} (5 A b-4 a B)}{4 a^3 x}-\frac {5 A b-4 a B}{2 a^2 x \sqrt {a+b x}}-\frac {3 b (5 A b-4 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{4 a^{7/2}}-\frac {A}{2 a x^2 \sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/(x^3*(a + b*x)^(3/2)),x]

[Out]

-A/(2*a*x^2*Sqrt[a + b*x]) - (5*A*b - 4*a*B)/(2*a^2*x*Sqrt[a + b*x]) + (3*(5*A*b - 4*a*B)*Sqrt[a + b*x])/(4*a^
3*x) - (3*b*(5*A*b - 4*a*B)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]])/(4*a^(7/2))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {A+B x}{x^3 (a+b x)^{3/2}} \, dx &=-\frac {A}{2 a x^2 \sqrt {a+b x}}+\frac {\left (-\frac {5 A b}{2}+2 a B\right ) \int \frac {1}{x^2 (a+b x)^{3/2}} \, dx}{2 a}\\ &=-\frac {A}{2 a x^2 \sqrt {a+b x}}-\frac {5 A b-4 a B}{2 a^2 x \sqrt {a+b x}}-\frac {(3 (5 A b-4 a B)) \int \frac {1}{x^2 \sqrt {a+b x}} \, dx}{4 a^2}\\ &=-\frac {A}{2 a x^2 \sqrt {a+b x}}-\frac {5 A b-4 a B}{2 a^2 x \sqrt {a+b x}}+\frac {3 (5 A b-4 a B) \sqrt {a+b x}}{4 a^3 x}+\frac {(3 b (5 A b-4 a B)) \int \frac {1}{x \sqrt {a+b x}} \, dx}{8 a^3}\\ &=-\frac {A}{2 a x^2 \sqrt {a+b x}}-\frac {5 A b-4 a B}{2 a^2 x \sqrt {a+b x}}+\frac {3 (5 A b-4 a B) \sqrt {a+b x}}{4 a^3 x}+\frac {(3 (5 A b-4 a B)) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x}\right )}{4 a^3}\\ &=-\frac {A}{2 a x^2 \sqrt {a+b x}}-\frac {5 A b-4 a B}{2 a^2 x \sqrt {a+b x}}+\frac {3 (5 A b-4 a B) \sqrt {a+b x}}{4 a^3 x}-\frac {3 b (5 A b-4 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{4 a^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 56, normalized size = 0.51 \begin {gather*} \frac {b x^2 (5 A b-4 a B) \, _2F_1\left (-\frac {1}{2},2;\frac {1}{2};\frac {b x}{a}+1\right )-a^2 A}{2 a^3 x^2 \sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/(x^3*(a + b*x)^(3/2)),x]

[Out]

(-(a^2*A) + b*(5*A*b - 4*a*B)*x^2*Hypergeometric2F1[-1/2, 2, 1/2, 1 + (b*x)/a])/(2*a^3*x^2*Sqrt[a + b*x])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.18, size = 117, normalized size = 1.06 \begin {gather*} \frac {3 \left (4 a b B-5 A b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{4 a^{7/2}}-\frac {8 a^3 B-8 a^2 A b-20 a^2 B (a+b x)+25 a A b (a+b x)-15 A b (a+b x)^2+12 a B (a+b x)^2}{4 a^3 b x^2 \sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(A + B*x)/(x^3*(a + b*x)^(3/2)),x]

[Out]

-1/4*(-8*a^2*A*b + 8*a^3*B + 25*a*A*b*(a + b*x) - 20*a^2*B*(a + b*x) - 15*A*b*(a + b*x)^2 + 12*a*B*(a + b*x)^2
)/(a^3*b*x^2*Sqrt[a + b*x]) + (3*(-5*A*b^2 + 4*a*b*B)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]])/(4*a^(7/2))

________________________________________________________________________________________

fricas [A]  time = 1.41, size = 275, normalized size = 2.50 \begin {gather*} \left [-\frac {3 \, {\left ({\left (4 \, B a b^{2} - 5 \, A b^{3}\right )} x^{3} + {\left (4 \, B a^{2} b - 5 \, A a b^{2}\right )} x^{2}\right )} \sqrt {a} \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + 2 \, {\left (2 \, A a^{3} + 3 \, {\left (4 \, B a^{2} b - 5 \, A a b^{2}\right )} x^{2} + {\left (4 \, B a^{3} - 5 \, A a^{2} b\right )} x\right )} \sqrt {b x + a}}{8 \, {\left (a^{4} b x^{3} + a^{5} x^{2}\right )}}, -\frac {3 \, {\left ({\left (4 \, B a b^{2} - 5 \, A b^{3}\right )} x^{3} + {\left (4 \, B a^{2} b - 5 \, A a b^{2}\right )} x^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + {\left (2 \, A a^{3} + 3 \, {\left (4 \, B a^{2} b - 5 \, A a b^{2}\right )} x^{2} + {\left (4 \, B a^{3} - 5 \, A a^{2} b\right )} x\right )} \sqrt {b x + a}}{4 \, {\left (a^{4} b x^{3} + a^{5} x^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x^3/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(3*((4*B*a*b^2 - 5*A*b^3)*x^3 + (4*B*a^2*b - 5*A*a*b^2)*x^2)*sqrt(a)*log((b*x - 2*sqrt(b*x + a)*sqrt(a)
+ 2*a)/x) + 2*(2*A*a^3 + 3*(4*B*a^2*b - 5*A*a*b^2)*x^2 + (4*B*a^3 - 5*A*a^2*b)*x)*sqrt(b*x + a))/(a^4*b*x^3 +
a^5*x^2), -1/4*(3*((4*B*a*b^2 - 5*A*b^3)*x^3 + (4*B*a^2*b - 5*A*a*b^2)*x^2)*sqrt(-a)*arctan(sqrt(b*x + a)*sqrt
(-a)/a) + (2*A*a^3 + 3*(4*B*a^2*b - 5*A*a*b^2)*x^2 + (4*B*a^3 - 5*A*a^2*b)*x)*sqrt(b*x + a))/(a^4*b*x^3 + a^5*
x^2)]

________________________________________________________________________________________

giac [A]  time = 1.31, size = 125, normalized size = 1.14 \begin {gather*} -\frac {3 \, {\left (4 \, B a b - 5 \, A b^{2}\right )} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{4 \, \sqrt {-a} a^{3}} - \frac {2 \, {\left (B a b - A b^{2}\right )}}{\sqrt {b x + a} a^{3}} - \frac {4 \, {\left (b x + a\right )}^{\frac {3}{2}} B a b - 4 \, \sqrt {b x + a} B a^{2} b - 7 \, {\left (b x + a\right )}^{\frac {3}{2}} A b^{2} + 9 \, \sqrt {b x + a} A a b^{2}}{4 \, a^{3} b^{2} x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x^3/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

-3/4*(4*B*a*b - 5*A*b^2)*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a^3) - 2*(B*a*b - A*b^2)/(sqrt(b*x + a)*a^3)
 - 1/4*(4*(b*x + a)^(3/2)*B*a*b - 4*sqrt(b*x + a)*B*a^2*b - 7*(b*x + a)^(3/2)*A*b^2 + 9*sqrt(b*x + a)*A*a*b^2)
/(a^3*b^2*x^2)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 101, normalized size = 0.92 \begin {gather*} 2 \left (-\frac {-A b +B a}{\sqrt {b x +a}\, a^{3}}+\frac {-\frac {3 \left (5 A b -4 B a \right ) \arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )}{8 \sqrt {a}}+\frac {\left (\frac {7 A b}{8}-\frac {B a}{2}\right ) \left (b x +a \right )^{\frac {3}{2}}+\left (-\frac {9}{8} A a b +\frac {1}{2} B \,a^{2}\right ) \sqrt {b x +a}}{b^{2} x^{2}}}{a^{3}}\right ) b \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/x^3/(b*x+a)^(3/2),x)

[Out]

2*b*(-1/a^3*(-A*b+B*a)/(b*x+a)^(1/2)+1/a^3*(((7/8*A*b-1/2*B*a)*(b*x+a)^(3/2)+(-9/8*A*a*b+1/2*B*a^2)*(b*x+a)^(1
/2))/x^2/b^2-3/8*(5*A*b-4*B*a)/a^(1/2)*arctanh((b*x+a)^(1/2)/a^(1/2))))

________________________________________________________________________________________

maxima [A]  time = 1.96, size = 144, normalized size = 1.31 \begin {gather*} -\frac {1}{8} \, b^{2} {\left (\frac {2 \, {\left (8 \, B a^{3} - 8 \, A a^{2} b + 3 \, {\left (4 \, B a - 5 \, A b\right )} {\left (b x + a\right )}^{2} - 5 \, {\left (4 \, B a^{2} - 5 \, A a b\right )} {\left (b x + a\right )}\right )}}{{\left (b x + a\right )}^{\frac {5}{2}} a^{3} b - 2 \, {\left (b x + a\right )}^{\frac {3}{2}} a^{4} b + \sqrt {b x + a} a^{5} b} + \frac {3 \, {\left (4 \, B a - 5 \, A b\right )} \log \left (\frac {\sqrt {b x + a} - \sqrt {a}}{\sqrt {b x + a} + \sqrt {a}}\right )}{a^{\frac {7}{2}} b}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x^3/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

-1/8*b^2*(2*(8*B*a^3 - 8*A*a^2*b + 3*(4*B*a - 5*A*b)*(b*x + a)^2 - 5*(4*B*a^2 - 5*A*a*b)*(b*x + a))/((b*x + a)
^(5/2)*a^3*b - 2*(b*x + a)^(3/2)*a^4*b + sqrt(b*x + a)*a^5*b) + 3*(4*B*a - 5*A*b)*log((sqrt(b*x + a) - sqrt(a)
)/(sqrt(b*x + a) + sqrt(a)))/(a^(7/2)*b))

________________________________________________________________________________________

mupad [B]  time = 0.43, size = 123, normalized size = 1.12 \begin {gather*} \frac {\frac {2\,\left (A\,b^2-B\,a\,b\right )}{a}-\frac {5\,\left (5\,A\,b^2-4\,B\,a\,b\right )\,\left (a+b\,x\right )}{4\,a^2}+\frac {3\,\left (5\,A\,b^2-4\,B\,a\,b\right )\,{\left (a+b\,x\right )}^2}{4\,a^3}}{{\left (a+b\,x\right )}^{5/2}-2\,a\,{\left (a+b\,x\right )}^{3/2}+a^2\,\sqrt {a+b\,x}}-\frac {3\,b\,\mathrm {atanh}\left (\frac {\sqrt {a+b\,x}}{\sqrt {a}}\right )\,\left (5\,A\,b-4\,B\,a\right )}{4\,a^{7/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x)/(x^3*(a + b*x)^(3/2)),x)

[Out]

((2*(A*b^2 - B*a*b))/a - (5*(5*A*b^2 - 4*B*a*b)*(a + b*x))/(4*a^2) + (3*(5*A*b^2 - 4*B*a*b)*(a + b*x)^2)/(4*a^
3))/((a + b*x)^(5/2) - 2*a*(a + b*x)^(3/2) + a^2*(a + b*x)^(1/2)) - (3*b*atanh((a + b*x)^(1/2)/a^(1/2))*(5*A*b
 - 4*B*a))/(4*a^(7/2))

________________________________________________________________________________________

sympy [A]  time = 102.54, size = 185, normalized size = 1.68 \begin {gather*} A \left (- \frac {1}{2 a \sqrt {b} x^{\frac {5}{2}} \sqrt {\frac {a}{b x} + 1}} + \frac {5 \sqrt {b}}{4 a^{2} x^{\frac {3}{2}} \sqrt {\frac {a}{b x} + 1}} + \frac {15 b^{\frac {3}{2}}}{4 a^{3} \sqrt {x} \sqrt {\frac {a}{b x} + 1}} - \frac {15 b^{2} \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}} \right )}}{4 a^{\frac {7}{2}}}\right ) + B \left (- \frac {1}{a \sqrt {b} x^{\frac {3}{2}} \sqrt {\frac {a}{b x} + 1}} - \frac {3 \sqrt {b}}{a^{2} \sqrt {x} \sqrt {\frac {a}{b x} + 1}} + \frac {3 b \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}} \right )}}{a^{\frac {5}{2}}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/x**3/(b*x+a)**(3/2),x)

[Out]

A*(-1/(2*a*sqrt(b)*x**(5/2)*sqrt(a/(b*x) + 1)) + 5*sqrt(b)/(4*a**2*x**(3/2)*sqrt(a/(b*x) + 1)) + 15*b**(3/2)/(
4*a**3*sqrt(x)*sqrt(a/(b*x) + 1)) - 15*b**2*asinh(sqrt(a)/(sqrt(b)*sqrt(x)))/(4*a**(7/2))) + B*(-1/(a*sqrt(b)*
x**(3/2)*sqrt(a/(b*x) + 1)) - 3*sqrt(b)/(a**2*sqrt(x)*sqrt(a/(b*x) + 1)) + 3*b*asinh(sqrt(a)/(sqrt(b)*sqrt(x))
)/a**(5/2))

________________________________________________________________________________________